Introduction to
Oracle & XML

Version 1.0.1
July 2012

ot dimitrahad

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

Table of contents

1 INTRODUCGCTION ..cuuiieiiiinneieniernnitrnceransrasstssseressessssssnssssssssasssssssssssssnssssnssssssssnssssnssssssssassssnssssssssnsssansesnsss 3
S RO 17 OO 3
1.2 PREREQUISITES ..vevvvruuueeeeerererasuneeeeessessssnneesessssssssnnseeesssssssssnnsessesssssssnnsesesssssssssnneesessssssssnnsesessssssssnnssssnnneesessssses 3
L3 STRUCTURE tuueeeieeettitieeeeeeertrettnaeeeeestesstanaesesesssssannsaeeessssssssnnsesessssssssnnseseesssssnssnnesessssssssnnneeesssessesssssssnnneesesessses 3

2 ORACLE 11G R2cceuiieiireenettnietencrennsressenseresseressersssssnsssessssasssensessssessssssnsssansssassssassssnsessnsesnsssansesansennnes 3
2.1 INSTALLATION ereteeeeeeereeererererererererereeeeeeseseeeseseseseeeseeeesaesessesesesesssesesessssesesesssssesesesesesesesesesssesssssasssssesssssssssssssnsens 3

2.1.1 Y =1 4 ol =X NS 7
2.2 SOLL DEVELOPER uvuuuueiiiiietttttieeeeeteeeststaeseeessessssiesesesssessssanaeeessssssssneesesssessssnsaeesssssssssnnesesssessssssnnessssessessssnsses 7

3 SAIMPLE DATA ...cciiiiiiteiitnieteniereeitensctassssasstsssesessessssssnssssssssasssssssssssessssssnssssnsssassssassssnsssansssnssssnsesansssnnes 8
3L XML DATA TYPE cettuueeeeeetetttueeeeeeereeestauaeeeeeeeessaneaseeesesssssnaaseessssssssannsesessssssssnnsessssssssnsnnseeessssssnnnnneesnnseessessnres 10

4 EXAIVIPLESceieieeiieieeneteetenteeerenseecsensesersssessesssassesssassessssssassasssnssssssnssessssssassssssassssssnssassssssassessnnssnnen 10
4,1 XMLELEMENT, XMLFOREST, XIMLATTRIBUTES.......uuciiiiiiiiiiutnuurnrnrnrnrersrerersrerererersrerersrssessreserereessrsereeeeeree. 10
L0 Y 1Y N 11
A .3 XIMLQUERY. ... ettt e et ee e e e e e e ettt e e e eeeeeeeaana e eeeeaeetasnaasseeeessensnnnsaseeenrnssnnnssrsnnneseeenennnnnnnareees 13
L YT Y = X N 14
BB XIMLEXISTS ittt et e e e e e e et e et e e e ee e e e e e s b e eeeee e s s s s s s e seeesesaatsan s seeessssraannaseeesesseesesssrannaeeaees 15
4.6 METHOD/FUNCTION EXTRACT AND FUNCTION EXTRACTVALUE .ccvviiiiieteie e cetteeee ittt e e eaee e s steeesesnteesssanesssnesesssnsenesnes 16
4.7 METHOD/FUNCTION EXISTSNODEuvtieiieteieieteeeeeteeessesteesessseeesesssessssseeessssesesasseessesesessssesessssssessasssesssssesessnns 16
4.8 XIMLCOLATTVAL 1eettttiieieeeeeettttieeeeeeeeeeatt e eeeeessessseaaaseesssssstnnsesesssssssnnnsaseeessssssnnnseseesssssssnneseeessssssnnnssnnnnenseees 17
L D AV (oL {1 PPN 17

4.9.1 (0o Lo [=3 {1 [S 18

4.9.2 D@ICTEXIMIL ..ottt ettt et e e e e et e e e e e e sttt eeeeessaassaaeseessassseeaseeessssesesarses 18

4.9.3 Insert and APPEN fUNCLIONScc.eeeueeeiiieieieeeeeeeeeee ettt s 19

4,10 OTHER XIVILTY PE IMETHODS ..vvvuueieiiieitttiiieieeeeeeetsttiieeeeeseeesstanaeeesssessssanneeesssssstsnnesesssssssssnnaseesssssssnnaesesssesssnns 20
4.1 XIVILTRANSFORM .vvutuueeeeeeetttruneeeeeesresssssseeeessssssssnaesessssssssnnseeeessssssssnnsesessssssssnnseesessssssssnnsesessssssnsnnnessnnneseeees 21
4,12 XQUERY FUNCTION ORAIVIEW 1uuunieeeeeertuuiieeeeereeesssunaeeesessssssnnnsesessssssssnasessessssssssnnsessessssssssnsessessssssnsnneesessssssnnnn 22

5 EPILOGUE......ccuiteiieeirtenereeereeerennetenseresesensesessesnssssnsssensssasssensesessessssssnsssessssassssnsesassesassesnsssnnsssnsesansennn 23

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

1 Introduction

This compendium gives a short introduction to Oracle 11g R2 and its facilities for database
administration. We discuss installing Oracle 11g R2 and using SQL Developer. After that,
there is an introduction to some Oracle specific XML features accompanied by SQL/XML
features supported by Oracle. All the examples are tested on Oracle for Windows on a
Windows 7 64-bit platform, but they should work in a similar manner on any platform. It is
recommended that you use Oracle for Windows.

The latest version of this compendium is available at
http://coursematerial.nikosdimitrakas.com/oraclexml/ where all other relevant files can also
be found.

1.1 Oracle

Oracle is one of the major DMBSs and its latest versions have added support for XML mostly
according to the latest SQL standards. The main tool for working with an Oracle database (in
version 11) is called SQL Developer. SQL Developer requires Java (also an Oracle product).
The Oracle Enterprise Manager is a web-based tool for administrating an Oracle server and
its database objects.

1.2 Prerequisites

It is required that the reader is familiar with database administration and SQL and has a good
understanding of XML. This introduction focuses on Oracle specific XML features, so most
basic database concepts will not be explained in detail. All the examples can be executed in
any interface tool for Oracle (like SQL Plus, TOAD, etc) but the recommended tool is SQL
Developer (which is bundled with Oracle).

1.3 Structure

In the next chapter we will take a quick look at the installation and configuration of Oracle
and at SQL Developer. After that we will look at the sample data used in the examples to
come. In chapter 4 we will go through several examples using the sample data and Oracle's
XML features.

2 Oracle 11g R2

Oracle 11g R2 is available for free by Oracle for non-commercial use. The installation is
divided into two zip-files that are available on oracle.com. On the same site there are
detailed instructions for installation, configuration and other tasks.

2.1 Installation

Start by downloading the appropriate installation files. This compendium is based on version
11.2.0.1.0 for Windows x64. In order to download the installation files, you may need to
create a free account.

Unzip the two files in the same folder prior to initiating the installation. All the files should
be in the folder "database" where you should also find the executable setup.exe.

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

Run setup.exe to start the installation.

Eventually you will see three install options. Choose to "Create and configure a database"

£ Oracle Database 11g Release 2 Installer - Installing database - Step 2 of 9 H[=] B3
Select Installation Option ORACLE 1 1g
DATABASE
Configure Security Updates Select any of the following install options.
el Installation Option (5) Creste and configure = database

A Gid Installation Options: -~
() Install database software only

() Upgrade an existing database

\ Hidip | | <poregfence | nasta» Ayt

Next, choose a Desktop class installation:

£ Oracle Database 11g Release 2 Installer - Installing database - Step 3 of 8 [_ 0] =]

System Class OR’ACI_E 11
D ATABASE

() Desktop Class

| Installation Otion Choose this option if you are instaling on & laptop o desktop class system. This option includes & starter
database and sllows minimal configuration

sl System Class .
() Server Class
A Typical Installation
Choose this option if you are installing on & server class system, such a3 what you would use when deploving
Oracle in & production data certer. This option allows for more advanced configuration options

Hisi <Foreglende | wastas Avbrgt

Introduction to Oracle and XML version 1.0.1 July 2012

nikos dimitrakas

Now, choose where Oracle should be installed and specify to use the standard edition and
the default character set. Specify a unique global database name and set the system
password. You will need to use this password later, to connect to the database.

£ Oradle Database 11g Release 3 Installer - Installing database - Step 4 of 8

Typical Install Configuration

Perform full Datsbase installation with basic configuration.

ORACLE 11 g

DATABASE

| Oracle base: |,; oracke |'| | Browse |
System Class
Software location: [oracietproduct11 2 0idbhome_t [~] [Erawse |
el Typical Installation —
% Prersuuisits Chacks Database file location: |c:\orac\e\orada1a | | Browvse |
Datahase edition | standard Edtion (3,2968) |
Character Set: | Cetaut prEemzMI 252) |
Global database name: |mkns it kthss |
Administrative password: |uuuu |
Confirm Password [|
\ Hidip | | <roregfence | mesm- | Avhryt

Oracle will now check that everything is ok and present a summary before the installation
can begin. Press "Finish" or "Slutfor" and the installation will begin. The installation process
will take a while.

£ Oracle Database 11g Release 2 Installer - Installing database - Step 7 of 8 [_ 10}
Install Product ORACLE 11g
DATABASE
Progress
[45% |
Extracting files to 'c\oracletoroduct il 2.0bhome_1'.
Statuz
| = Oracle Database installation In Progress
@ Install Product "« Prepare Succeeded
e Copy files In Progress
« Setup files Pending
Oracle Detabass configuration Pending
| Details |
. n. " o R i g, .
oﬁffste 11g 5 - - s .. " - i Oracle Application Express
Applicati Oracle SQL Developer
pplication . "Oracle Data Masking Pack
Development - &

Hiéilp

Avbryt

Introduction to Oracle and XML version 1.0.1 July 2012

nikos dimitrakas

Depending on the platform some errors may be reported by the wizard. Just ignore them.
Eventually, the installation will be completed and the wizard will present a summary.

% Database Configuration Assistant

Database creation complete. For details check the logfiles at:
claraclelcfatonllogsidbeatnikos.

Database Infarmation:
Global Database Mame: nikos.it.kth.se
Systemn ldentifier{S100): nikos
Server Parameter File name: cloraclelproduct]1.2.00dbhome_1wdatabaselspfilenikos.ora

The Database Control URL is hitps:fflocalhost1158kem

Management Repasitory has heen placed in secure mode wherein Enterprise Manager
data will be encrypted. The encryption key has been placed in the file: cioracle/producti11.
2.0idbhome_1iocalhost_nikosfsysmaniconfigfemkey.ara. Please ensure this file is
hacked up as the encrypted data will become unusahle ifthis file is lost.

Mote: All databhase accounts except S8, SYSTEM, DEBSMMP, and SYSMAN are locked.
Selectthe Password Management button to view a camplete list of locked accounts arto
manage the database accounts (except DESKHMP and S¥SMAN). From the Passwaord
Management window, unlack anly the accounts you will use. Oracle Corporation strongly
recammends changing the default passwords immediately after unlocking the account.

Password Management... JI

%/J

In this summary, you will notice the Database Control URL. This URL opens the Oracle
Enterprise Manager where you can manage your database instance. You can manage
performance settings, users, tables, views, triggers, etc. Log in as SYSTEM with the password

you specified earlier and take a look.

After pressing OK on the above summary window, the main wizard window will reach Step 8

"Finish" and Oracle will have been installed.

£ Oracle Database 11g Release 2 Installer - Installing database - Step 8 of 8

- ORACLE qag
N N@ DATABASE 11

skipped.

Mote:

The installation of Cracle Database was successful, but some configuration assistants failed, were cancelled or

Enterprize Manager Database Cortrol URL - (nikos) ©
hittps: Mocalhost1158%em

I
'« Finish

Hislp

Sténg

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

In the start menu, you will find several shortcuts to different Oracle tools. We will use SQL
Developer. SQL Developer is bundled with Oracle, but requires Java. Depending on your
configuration (32-bit or 64-bit) you may need to download SQL Developer separately and
replace the bundled version. When starting SQL Developer for the first time, you will also
have to point to java.exe (the one in the JDK/bin directory). It is recommended to use the
latest version. The version used in this introduction is 3.1.07.

2.1.1 Services
During the installation several Windows services were created:

[sersces e e

Ele Acton View Help

ke 3 | NERERER 7 Mol L NTI T

.. Services {Local)

q Services (Local)

Name = Description Status Startup Type Log On As -
| | | | =

OracleServiceNIKOS

Orade NIKOS VS5 Writer Service Started Manual Local System
Stop the service (Oradec_orade_product_112~1.0_dbhome_1ConfigurationManager Automatic Local System
Pause the service L. OradeDBConsolenikos Started Automatic Local System
Restart the service -
OracdelobSchedulerNIKOS Disabled Local System |
/. OradeMTSRecoveryService Started Automatic Local System
(- OradeOraDb11g_home 1THSListener Started Automatic Local System

L. OradeRemExecService Started Disabled Local System
OradeServiceNIKOS Automatic

Local System

% Extended 4 Standard /

The one called OracleService is the main service for the database instance.

2.2 SQL Developer

SQL Developer is a tool for performing common database tasks easier. It provides several
wizards for database object creation, code completion for SQL, monitoring tools, etc.

When you start SQL Developer, you need to create a connection or use an existing one. To
work locally, create a local connection and log in as SYSTEM with your password.

#. New | Select Database Connection

Connection Name ~ Connection Detalls | Connection Name |LOCALHOST

Username system

Password snasanee

Save Password

Oracle Access

Connection Type |Lcca|fBequeath v| Role |default =

[] 08 Authentication [| Kerberos Authentication [| Proxy Connection

Status : Success

Hialp | | Save | | Clear | | Test | | Connect | | Avbryt |

Once the connection has been created, you will see several panes. On the left you should
have the connections pane where you can explore all the objects of your connection. On the
right, you have one or more worksheets where you can write SQL commands or scripts. Each

7

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

worksheet is associated to one connection. Below the worksheet area, there is the result
area (or at least it will show up there after you execute a command). The placement of each
pane is freely configurable, so it could look like this:

¥, Oracle SQL Developer : LOCALHOST o [m] 3

File Edit View MNavigate Run Versioning Tools Help
Golda 2@ XER O O & Fﬂiﬁ

[Connections x [0 | @aLocaLHosT * S
+0T7E CERBR G Bued | rocarost~|

[, Connections) | Worksheet | Query Buider

-8 LocALHosT SELECT 'nikos', 2012
{3 Tables (Filtered) FROM dual|

B3 views

{88 editioning views

~[38 Indexes

il Packages

~[3) Procedures

13 Functions

7 Queues

[7A Queues Tables

{8 Triggers

~[8 Crossedition Triggers
~[a Types

~{ 13 Sequences

[Materialized Views
[Materialized Views Logs
[synonyms

[Gal Public Synonyms

@ LocaiHosT x

@ o o

[Tables - -

[AQ$_INTERNET_AGENTS

51 AQ$_INTERNET_AGENT _PRIVS
[EH 4Q$_QUELES

[AQ$_QUEUE TABLES

35| L)L (T <

[EH 4Q$_SCHEDULES
53 DEF$_AQeALL
[EH DEF$_AQERROR

av
[Query Result x

[DEF§_CALLDEST A 5, @) Bk sa | AlRows Fetched: 1in 0,01 seconds

[l DEF$_DEFALLTDEST [nwos |f 2012

] DEF'S_DESTINATION > 1 W |
l\i‘v)

Task Progress D]

|Une2Column 10 | Insert | Modified | Windows: CRALF Editiny

3 Sample Data

In this chapter we will take a look at the data that we will use in the examples to follow. We
will use a database with both relational data and XML data. That is, a database with tables,
columns, keys, integrity constraints, etc. but with a couple of columns containing XML
documents (each cell being an XML document).

v . %o H Publisher
:e.ar Title % Name
rice
: Criginallanguage Street
Translations)
Book o0 Genre City
o0 PostalCode
Country
7 D .
Mame
Infao

The columns Edition.Translations and Author.Info contain XML according to the following
XML Schemas. The rest of the columns are defined as VARCHAR2 and INTEGER. The only
column that allows NULL is the column Book.Genre.

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

XML Schema for documents in Edition.Translations:

<?xml version="1.0"?>
<schema xmins="http://www.w3.0rg/2001/XMLSchema">
<element name="Translations">
<complexType>
<sequence>
<element name="Translation" minOccurs="0" maxOccurs="unbounded">
<complexType>
<attribute name="Language" type="string" use="required"/>
<attribute name="Publisher" type="string" default="N/A"/>
<attribute name="Price" type="integer" use="required"/>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

The value of the attribute Publisher must correspond to a value in the column
Publisher.Name. This kind of constraint could be implemented as a set of triggers.

XML Schema for documents in Author.Info:

<?xml version="1.0"?>
<schema xmlins="http://www.w3.0rg/2001/XMLSchema">
<element name="Info" type="InfoType"/>
<complexType name="InfoType">
<all>
<element name="Email" type="string"/>
<element name="YearOfBirth" type="integer"/>
<element name="Country" type="string"/>
</all>
</complexType>
</schema>

The entire script for creating and populating the database can be found on
http://coursematerial.nikosdimitrakas.com/oraclexml/

The script can be run through SQL Developer. It creates a schema called bookdb as well as all
the tables and other relevant objects in this schema.

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

3.1 XML data type

Oracle 11g R2 has an XML data type called XMLTYPE. This data type can be used with and
without an XML Schema, thus allowing for validation or no validation. There is no support for
DTD. Any schema to be used must be already registered. The validation performed is only
structural. Full validation can be done with the function XMLIsValid which can be used in a
constraint in order to ensure that only fully validated documents make it into the database.

In the provided database script, there is no validation. On the other hand, the XML data type
always checks that the input is well-formed.

4 Examples

In this chapter we will go through some examples of SQL/XML in Oracle and some examples
that use Oracle specific XML features. All the examples in this chapter assume that the
database has been created and that the default schema is bookdb.

4.1 XMLELEMENT, XMLFOREST, XMLATTRIBUTES

Let's start off with a few simple queries using some basic SQL/XML publishing functions. We
want to create an XML document for each author. The root element shall be "Author", the
name shall be an attribute and the author info (which is already an XML document) shall be
the content. The following SQL statement does that.

SELECT XMLELEMENT(NAME "Author", XMLATTRIBUTES(name AS "Namn"), info)
FROM author

Here is a portion of the result (2 rows):

<Author Namn="John Craft">
<Info>
<Email>jc@jc.com</Email>
<Country>England</Country>
<YearOfBirth>1948</YearOfBirth>
</Info>
</Author>
<Author Namn="Arnie Bastoft">
<Info>
<Email>bastoft@frei.at</Email>
<Country>Austria</Country>
<YearOfBirth>1971</YearOfBirth>
</Info>
</Author>

10

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

If we want to create an XML document for each publisher, it may be better to use
XMLFOREST, since the table publisher has many columns that we may want to have as
elements. Let's assume that for each publisher, we want to have a root element "Publisher’
and that all the columns should get their own elements. The following statement does that.

SELECT XMLELEMENT(NAME "Publisher", XMLFOREST(name AS "Name", street AS "Street",
city AS "City", postalcode AS "PostalCode", country AS "Country"))
FROM publisher

For each row in the table publisher, we get an XML document like this:

<Publisher>
<Name>ABC International</Name><Street>7th Bear St.</Street><City>Berlin</City>
<PostalCode>44500</PostalCode><Country>Germany</Country>

</Publisher>

One thing that is important when working with XML is the case of the element names and
attribute names. In the above examples, we used the double quotes in order to enforce the
desired case. Oracle's default is to capitalize column names when generating XML. So the
following statement would capitalize everything except for "City":

SELECT XMLELEMENT(NAME Publisher, XMLFOREST(name, street AS StrEEt, city AS "City"))
FROM publisher

The result looks like this:

<PUBLISHER>
<NAME>ABC International</NAME><STREET>7th Bear St.</STREET><City>Berlin</City>
</PUBLISHER>

4.2 XMLAGG

XMLAGG is an aggregate function and as such, it complies with the rules of aggregate
functions. If it is used without a GROUP BY clause, then all the rows will become one group.
It can of course be mixed with non-aggregated columns in the SELECT clause, but then all
non-aggregated columns must also appear in the GROUP BY clause.

If we want to expand on the example from the previous section and put all the authors in
one XML document, we need to use XMLAGG. Any column that appears inside the XMLAGG
function is considered to be aggregated. The following statement creates a root element
"Authors" and aggregates all the Author elements into it.

SELECT XMLELEMENT(NAME "Authors",

XMLAGG(XMLELEMENT(NAME "Author",
XMLATTRIBUTES(name AS "Name"),
info)))

FROM author

11

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

The result looks like this:

<Authors>
<Author Name="John Craft"><Info><Email>jc@jc.com</Email>
<Country>England</Country><YearOfBirth>1948</YearOfBirth></Info></Author>
<Author Name="Arnie Bastoft"><Info><Email>bastoft@frei.at</Email>
<Country>Austria</Country><YearOfBirth>1971</YearOfBirth></Info></Author>
<Author Name="Meg Gilmand"><Info><Email>megil@archeo.org</Email>
<Country>Australia</Country><YearOfBirth>1968</YearOfBirth></Info></Author>

</Authors>

XMLAGG in combination with GROUP BY is relevant when we need some nesting. Perhaps
we want to group the publishers per country. The result may be one Country element per
country containing one or more Publisher elements. If we want to also have a root element,
a second XMLAGG is required.

SELECT XMLELEMENT(NAME "PublishersByCountry", XMLAGG(countryxml))
FROM (SELECT XMLELEMENT(NAME "Country",
XMLATTRIBUTES(country AS "Name"),
XMLAGG(XMLELEMENT(NAME "Publisher",
XMLATTRIBUTES(name AS "Name", city AS "City")))) AS countryxml
FROM publisher
GROUP BY country) innertable

The nested statement produces one Country element for each country. The result is a table
with as many rows as there are countries (groups). The outer statement aggregates these
Country elements and makes them the content of the element PublishersByCountry. In the
nested statement the column country is the only one appearing in the SELECT clause outside
the aggregate function, and is thus the only column appearing in the GROUP BY clause. The
result of the nested statement is a table with the alias innertable and it has a column named
countryxml. The result of the entire statement has the following structure:

<PublishersByCountry>
<Country Name="England">
<Publisher Name="Benton Inc" City="London"/>
</Country>
<Country Name="Sweden">
<Publisher Name="Bé&sta Bok" City="Stockholm"/>
<Publisher Name="KLC" City="Uppsala"/>
<Publisher Name="SCB" City="Stockholm"/>
</Country>

</PublishersByCountry>

12

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.3 XMLQUERY

The XMLQUERY function can be used when we want to execute XQuery within an SQL
statement. The XMLQUERY function can also accept parameters that map values of the SQL
scope to variables in the XQuery scope. We may want to retrieve the name and country of
each author:

SELECT name, XMLQUERY('Si//Country/text()' PASSING info AS "i" RETURNING CONTENT)
FROM Author

In this case the XQuery expression is quite a simple one, but it can also be complicated. The
PASSING keyword allows us to map the current value of the column info as an XQuery
variable (in this case "i" which is then referred to as "Si"). In Oracle, the keywords
RETURNING CONTENT are required and there is no alternative. The result has two columns:

John Craft England
Arnie Bastoft Austria
Meg Gilmand Australia
Chris Ryan France
Alan Griff USA
Marty Faust USA

The result of the XMLQUERY function is actually of the XML data type, but Oracle will
serialize it automatically when showing the result. Here is another example that illustrates
that the XMLQUERY function returns XML:

SELECT name, XMLQUERY('Sx/Country/text()'
PASSING XMLQUERY('Si//Country'
PASSING info AS "i"
RETURNING CONTENT) AS "x"
RETURNING CONTENT)
FROM Author

This produces the same result as the previous statement, but finds the country in two steps.
The nested XMLQUERY function in Oracle returns an XML value, but its root node is not the
Country element, even though it appears to be. In the outer XMLQUERY call, we must
therefore go from the root to the Country element. This behaviour is due to the RETURNING
CONTENT keywords that create a document node as the root node of the result. RETURNING
SEQUENCE (which is not yet implemented by Oracle) would let the Country element be the
root node.

XMLQUERY can also be used to create XML from a string. So XMLQUERY('<X>123</X>'

RETURNING CONTENT) will return an XML value. This is because the string '<X>123</X>'is a
valid XQuery statement.

13

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.4 XMLTABLE

When dealing with repeating elements in an XML document, we may want to break it down
into smaller XML-documents or even values. The XMLTABLE function can be used in the
FROM clause of a SELECT statement and it transforms the result of an XQuery statement into
a table. We may want to get one row per translation of each edition. The column
translations in the table edition contains multiple Translation elements. So the following
statement splits them up and presents them one by one.

SELECT id, book, tt.column_value
FROM Edition, XMLTABLE('St//Translation' PASSING translations AS "t") AS tt

The result should look like this:

<Translation Language="German" Publisher="Kingsly" Price="130"/>
<Translation Language="French" Publisher="Addison" Price="135"/>
<Translation Language="Russian" Publisher="Addison" Price="125"/>
<Translation Language="Swedish" Price="340"/>

<Translation Language="French" Price="320"/>

NN R R R
NN R R R

The resulting column of the XMLTABLE function is called column_value when the keyword
COLUMNS is not present.

Just as with XMLQUERY the result of the XMLTABLE function is also wrapped inside a
document node. This can be illustrated with the following example, where in order to access
the Language attribute, we must go from the root (the document node) to the Translation
element node, to the attribute node:

SELECT id, book, XMLQUERY('/Translation/@Language'
PASSING tt.column_value RETURNING CONTENT)
FROM Edition, XMLTABLE('St//Translation' PASSING translations AS "t") AS tt

Using the keyword COLUMNS could also break down this further:

SELECT id, book, tt.language, tt.price, tt.publisher
FROM Edition, XMLTABLE('St//Translation'
PASSING translations AS "t"
COLUMNS Language VARCHAR(15) PATH '@Language’,
Price INTEGER PATH '@Price’,
Publisher VARCHAR(30) PATH '@Publisher') AS tt

14

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

The translations XML is now fully shredded:

=0
file Edit View Navigate Run Versioning Tools Help
Go@g 90 XEE Q-0 1&- =
[, Connections X (2 | @yocarost x =
FRTH PEEBR RQR &Gued |8 LocurosT~ |
B, connections + | worksheet Query Builder
=g}, LocALHOST 5 SELECT id, beok, tr.language, tr.price, tr.publisher
[Tabies FROM Edition, XILTABLE('§t//Translation’
(28 views FASSING translations AS "t”
{F3) Editioning Views COLUMHS Language VARCHAR(15) PATH 'Blanguage',
[Indexes Price THTEGER PATH 'BPrice!,
[Packages Publisher VARCHAR{30) PATH 'BPublisher') S tt
-[3) Procedures
-[3% Functions
-3 Queues LI
ES:;::ZTEHES) | Elsript output % B> Query...
@ Crossedition Triggers A B,) B8 50U | Fetched 50 rows in 0,04 seconds
e g w8 sook[y Lancuace|fl price [} PussHER
~{ 14 sequences
[Materizlized Views L - L6erman 130Kingsly
-[§8 Materialized Views Logs 2 1 1French 135 Addison
[synonyms 3 1 1Russian 125 Addison
[Ga) Public Synonyms 4 2 2 Swedish 340 (null)
@ LoCALHOST * = 5 2 2 French 320 (null)
(8 soooe =P | 6 3 2 Swedish 390 KLC
73 2 French 330KIC
[Tebles d=d 8 3 2 Chinese 280 Shou-Ling
EH AuTHOR EI 2 French 320KIC
= autHoRsHIP U] 4 2Italian 320 KIC
(8 sook oo 2 Turkisn 300 Turk And Turk
8 epmmon 2 4 2Spenish 300 (aull)
[PUBLISHER
B 7 4 Svedish 160 5C8
#7 4 German 140 (null)
15 7 4 Russian 140RP
16 8 5 Swedish 260 Basta Bok
71z 8 German 310ABC International
8-) 18 12 8 French 310 (null)
ikmnss x (=] 19 12 8 Russian 300 (null)
\—]é 20 13 ¢ German 320ABC International
21 13 @ French 330ABC International
[2 14 8 German 350 ABC Internaticnal
3 15 9 Finnish 95 Suomi Bookkii
24 16 10 English 120 (null)

4.5 XMLEXISTS

XMLEXISTS is a function that can be used to express conditions based on the existence of a
particular XML node. We could for example find any books that have been translated to
German (i.e. they have an edition with a translation whose language is German):

SELECT title
FROM Book
WHERE id IN (SELECT book
FROM edition
WHERE XMLEXISTS('St//Translation[@Language="German"]'
PASSING translations AS "t"))

The nested statement does the work of finding the correct books, while the outer statement
retrieves the titles. As you can see, the result of the function is a boolean value, so it can be
used as a condition. The result looks like this:

Misty Nights

Oceans on Earth
Contact

Music Now and Before
Musical Instruments

Le chateau de mon pere

15

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.6 Method/Function Extract and function ExtractValue

Oracle's method/function Extract and function ExtractValue can be used with XML objects
(values of the data type XMLTYPE) to retrieve XML fragments or values. They are deprecated
and the SQL/XML function XMLQUERY should be used instead. Here are some examples
anyway.

If we want to get the country of each author we could use any of the following:

SELECT name, a.info.extract('//Country/text()'), Extract(info, '//Country/text()"),
ExtractValue(info, '//Country')
FROM author a

The extract method and the Extract function return XML, so it is the exact node that is
returned. The ExtractValue function returns the value of the node and not the node itself.
The extract method (and any other XMLTYPE method) requires that the column containing
the XML object be qualified with an alias. Both of the following will therefore return an error
(even though at plain sight they appear to be correct).

SELECT name, info.extract('//Country')
FROM author

SELECT name, author.info.extract('//Country')
FROM author

Another important thing to remember is that the result of extract (method or function) will
be a new XML document with a document node as its root. This is the same behaviour as for
XMLQUERY which we discussed earlier.

4.7 Method/Function ExistsNode

The function ExistsNode and the corresponding XMLTYPE method existsNode can be used to
check the existence of a node for a specific XPath expression. They return 1 if the result is
not empty and O if the result is empty. We could for example find all the authors from
Sweden. Any one of the two conditions is enough.

SELECT name

FROM author a

WHERE ExistsNode(info, '//Country[. = "Sweden"]') = 1
OR a.info.existsNode('//Country[. = "Sweden"]') = 1

The result is the following:

Jakob Hanson
Marie Franksson

This function/method is deprecated and the SQL/XML function XMLEXISTS should be used
instead.

16

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.8 XMLColAttVal

XMLColAttVal is a function that transforms one or more columns to an XML fragment. For
each column an element "column" is created and the value becomes the content. The
column's name is stored as the value of the attribute "name". The same result could of
course be produced with the standard publishing functions of SQL/XML. Here is an example:

SELECT XMLCOLATTVAL(name, country, city)
FROM Publisher

This produces the following result:

<column name = "NAME">ABC International</column>
<column name = "LAND">Germany</column>
<column name = "CITY">Berlin</column>

<column name = "NAME">Addison</column>
<column name = "LAND">France</column>
<column name = "CITY">Toulouse</column>

We could of course add a root element with XMLELEMENT. The following statements will
have the same result.

SELECT XMLELEMENT(NAME "Publisher", XMLCOLATTVAL(name, country, city))
FROM Publisher

SELECT XMLELEMENT(NAME "Publisher",
XMLELEMENT(NAME "column", XMLATTRIBUTES('NAME' AS "name"), name),
XMLELEMENT(NAME "column", XMLATTRIBUTES('COUNTRY"' AS "name"), country),
XMLELEMENT(NAME "column", XMLATTRIBUTES('CITY' AS "name"), city))

FROM Publisher

4.9 DML for XML

Oracle provides several functions for manipulating XML with operations similar to SQL
INSERT, UPDATE and DELETE. There is one function for update called UpdateXML, one
function for delete called DeleteXML and several functions for insert called InsertChildXML,
InsertChildXMLBefore, InsertChildXMLAfter, InsertXMLBefore, InsertXMLAfter and
AppendChildXML. All these functions work based on the same principal. They take an XML
value as a parameter and return a changed version of it. The original XML value is not
affected. That means that the column containing the original XML value has to be updated
with SQL UPDATE if the change is to become permanent. In this section we look at some
examples. For more details on these functions refer to the documentation.

17

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.9.1 UpdateXML

The function UpdateXML is fairly simple. It takes three parameters: the original XML value,
an XPath expression identifying the node whose value is to be changed, and the new value. If
the XPath expression matches more nodes, then all of them will be updated. If the XPath
expression does not match any nodes, the result will be identical to the original XML value.

Let's say we want to change the e-mail address of the author Carl Sagan. We can use the
following UPDATE statement:

UPDATE author
SET info = UPDATEXML(info, '//Email/text()', 'carl@sagan.info')
WHERE name = 'Carl Sagan'

This statement identifies the correct row in the author table and replaces the value of the
column info with a new value generated by the function UpdateXML. The function takes the
current value of the column info and replaces the text node with the new value. UpdateXML
always replaces the entire node so UPDATEXML(info, '//Email’, 'carl@sagan.info') would
instead have removed the element node and created a text node.

The third parameter can be a string value or XML. If the node to be updated is an attribute
node, then the third parameter provides the new value for the node, but the node itself is
not replaced, just its value.

Here is another way to achieve the same result as with the previous statement:

UPDATE author
SET info = UPDATEXML(info, '//Email', XMLELEMENT(NAME "Email", 'carl@sagan.info'))
WHERE name = 'Carl Sagan'

This is obviously unnecessarily complex, since it recreates the entire element node instead of
just switching the text node.

4.9.2 DeleteXML
Removing a node is done with the function DeleteXML. It deletes any nodes matching the

specified XPath expression. We could for example remove the Email element node from Carl
Sagan's info XML (which would violate the XML Schema, but we can ignore that right now).

UPDATE author
SET info = DELETEXML(info, '//Email')
WHERE name = 'Carl Sagan'

If you want to restore Carl Sagan's info XML to the original, just use the following statement:

UPDATE author

SET info = '<Info><Email>carlsagan@nasa.gov</Email><Country>USA</Country>
<YearOfBirth>1913</YearOfBirth></Info>'

WHERE name = 'Carl Sagan'

18

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.9.3 Insert and Append functions

The reason there are many functions for adding nodes, is that the relative position of the
added nodes needs to be specified. You may want to add a node before another node or
after another node, or perhaps as the last child node. Let's look at some examples. If we
want to add a Website element for Carl Sagan, we may use the function AppendChildXML:

UPDATE author

SET info = APPENDCHILDXML(info, '//Info',
XMLTYPE('<Website>www.carlsagan.com</Website>'))

WHERE name = 'Carl Sagan'

This statement adds the new element node as the last child of the node matching the XPath
expression specified in the second parameter. In the previous statement we created an
XMLTYPE value from a string representation. Another way would be to use the
XMLELEMENT function:

UPDATE author
SET info = APPENDCHILDXML(info, '//Info',

XMLELEMENT(NAME "Website", 'www.carlsagan.com'))
WHERE name = 'Carl Sagan'

If we would prefer to add the Website element directly after the Email element, we can use
the function InsertXMLAfter:

UPDATE author
SET info = INSERTXMLAFTER(info, '//Email’,

XMLELEMENT(NAME "Website", 'www.carlsagan.com'))
WHERE name = 'Carl Sagan'

The created node becomes the next sibling to the node specified by the XPath expression. If
that XPath expression matches several nodes, then a new node will be added after each of
them.

If we want to add an attribute node, the function InsertChildXML may be the best choice.
Let's say that we want to add an attribute Launched to the Website element that we created
before and specify that Carl Sagan's website was launched in 1997. We could do that with
the following statement:

UPDATE author
SET info = INSERTCHILDXML(info, '//Website', '@Launched', 1997)
WHERE name = 'Carl Sagan'

The third parameter specifies the name of the node to be created. The at sign (@) indicates
that the node to be created shall be an attribute node. The fourth parameter specifies the
value of the new node. It can be of any type and it will be adapted to XML. If it is a date, time
or decimal, the current locale may affect the resulting layout.

19

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.10 Other XMLTYPE methods

Oracle has a number of extra methods that can be used on XMLTYPE objects. We have
already discussed some of them in previous sections. The methods getStringVal, getBLOBVal
and getCLOBVal are basically serialization methods that return the XMLTYPE object as a
String, BLOB and CLOB respectively. The method getNumberVal returns the value of the
object as a number. The object must have a value that is possible to convert to a number.
The XMLTYPE object must be a text node or attribute node. Here is a simple example:

SELECT XMLQUERY('99' RETURNING CONTENT).getNumberVal() + 1
FROM DUAL

The result is 100. XMLQUERY returns 99 as an XMLTYPE object and the method retrieves its
value as a number. The following does not work because the first part of the plus operation
is not a number:

SELECT XMLQUERY('99' RETURNING CONTENT) + 1
FROM DUAL

There are also some methods on the XMLTYPE that can return information about the XML
object. The method getRootElement returns the name of the root element unless the XML
object is a fragment and then the result is NULL. The method getSchemaURL returns the URL
of the XML Schema associated with the XML object. The method isFragment can be used to
check if an XML object is an XML fragment or an XML document. The method returns 1 or O.
The method isSchemaValid can be used to validate the XML object given an XML Schema.
The method isSchemaBased checks if the object is associated with an XML Schema. The
method IsSchemaValidated checks if the object has already been validated based on its
associated XML Schema. It does not distinguish between not being valid and not having been
validated. The following statement uses some of these methods:

SELECT a.info.isSchemaBased(), a.info.isSchemaValidated(),
a.info.getRootElement(), a.info.isFragment()

FROM author a

WHERE id=1

The result is 0,0,'Info',0, which means that the XML object is not schema based, it has not
been validated, its root element is Info and it is not a fragment (it is an XML document).

There is also a method called transform, which can be used to apply an XSLT to the XML

object. This method is similar to the function XMLTransform, so they are both described in a
separate section.

20

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

4.11 XMLTransform

If we want to use XSLT to transform XML objects, we have two options. There is a function
XMLTransform and a method transform. Both have the same result. The function requires
that the XML value to be transformed is specified as a parameter, while the method
operates on a specific XML object. We could for example apply the following XSLT to the info
XML of the authors.

<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>

This XSLT restructures the information in the info XML and returns a Details element with
three attributes.

We could ask for the info XML of Carl Sagan, transformed according to the XSLT, with the
following statement:

SELECT XMLTRANSFORM(info,
'<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>')
FROM author
WHERE name = 'Carl Sagan'

The result is the following XML value:

<?xml version="1.0" encoding="UTF-8"?>
<Details Mailaddress="carlsagan@nasa.gov" Country="USA" Birthyear="1913"/>

21

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

The function adds an XML declaration and returns the XML value serialized. The method is a
little less flexible. It requires that the XSLT is provided as an XMLTYPE value, which is quite
easy to do. The following statement produces the same result as the one using the function.

SELECT a.info.transform(
XMLTYPE('<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<xsl:element name="Details">
<xsl:attribute name="Mailaddress"><xsl:value-of select="//Email"/></xsl:attribute>
<xsl:attribute name="Country"><xsl:value-of select="//Country"/></xsl:attribute>
<xsl:attribute name="Birthyear"><xsl:value-of select="//YearOfBirth"/></xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:transform>'))
FROM author a
WHERE name = 'Carl Sagan'

Of course the XSLT doesn't have to be provided in this way. We could, for example, create a
table and store all of our XSLTs in it and then retrieve the one to use.

4.12 XQuery function ora:view

In some cases, we may want to access relational data from within XQuery. The function
ora:view makes this possible. It takes the name of a table or view as a parameter and returns
the content as an XML fragment with one ROW element per row and one subelement for
each column. The element names will be in upper case by default. We could, for example,
access all the countries of publishers (in an XQuery statement) using the following
statement:

SELECT XMLQUERY('for Sc in distinct-values(ora:view("publisher")//COUNTRY)
return element Country {Sc}'
RETURNING CONTENT)
FROM DUAL

The result is an XML fragment with one Country element for each unique country:
<Country>Austria</Country>
<Country>Belgium</Country>

<Country>China</Country>
<Country>England</Country>

22

Introduction to Oracle and XML version 1.0.1 July 2012 nikos dimitrakas

5 Epilogue

Oracle has been moving closer to the SQL standard with each new version. Many of the
Oracle specific functions have been deprecated and replaced by standard constructs. It is
therefore essential to follow the release information of each version. Many of the Oracle
specific features described here will probably be replaced in the years to come. The XQuery
Update Facility will probably be available in future version. In the examples in the previous
chapter we looked at some of the features that are available in Oracle 11g R2. There are
many more details. But it has not been the goal of this introduction to cover everything.

| hope you have found this introduction educational and fun. Do not hesitate to send
comments and suggestions that may help improve the next version of the compendium!

The Author
o dimitral

23

